Home > News >


Better together: a bacteria community creates biodegradable plastic with sunlight

Date: 2017-11-01 15:48:04.0
Author: Michigan State University

The IV container that saves a life ends up on a landfill. Or that milk jug from the store ends up floating gently down a stream, with dozens others.

For all their convenience, plastics are massive environmental headaches.

“The main problem is that most synthetic plastic is not completely biodegradable. It cannot be broken down by living organisms, which is why it lasts for hundreds of years after being discarded,” says Taylor Weiss, a former post-doc in the Ducat lab.

Scientists are trying to synthesize environmentally-friendly plastic alternatives, using bacteria.

And it exists: 100% biologically-derived. 100% biodegradable.

But it is too expensive to mass market.

Now, in a study, published in the journal Metabolic Engineering, Taylor and the Ducat lab propose a new production method, powered by sunlight and an ancient microorganism, that could significantly cut costs.


Cyanos: micro powerhouses

“Present bioplastic production relies on feeding plastic-producing bacteria with large quantities of sugars from crops, like corn or sugarcane,” Taylor says. “But these crops also feed people and animals, so we risk competing for limited agricultural resources and driving food prices up in the long term.”

A promising alternative is working with cyanobacteria, microorganisms that harness sunlight to produce chemical compounds, through photosynthesis.

Cyanos (for short) thrive in environments hostile to crops, like iceberg walls or the edges of hot springs, minimizing competition for agricultural land.

That's why they're hot in the biotech industry, with scientists wanting to genetically tweak them to create products for human consumption, like electricity, biofuels, even food and oxygen for future manned outposts on Mars!


A bioplastic consortium engineered

There's a catch. Cyanos are great at photosynthesis, but not so much at making bioplastics.

Current methods where cyanos do it all - collect the sun’s energy, the carbon, and the create the bioplastic - end up inefficient.


From plastic to perfumes and medicines

Taylor's cooperative seems to continuously improve with time, without human meddling.

Working with one organism can be hard, because it typically prioritizes its health and growth over producing for us.

“But this pair has complementary strengths: the cyanos are constantly producing sugar, and the bacteria are constantly beefing up on it, which encourages the cyanos to keep producing.”

Looking ahead, Taylor wants to improve productivity and diversify the bioproduct line.

“We’ve laid the foundation for a “plug-and-play” system where a cyano can be gradually upgraded to produce more sugar. We eventually want to pair it with diverse specialist bacteria to create many cheaper, green bioproducts like fuels, fragrances, dyes, and medicines.”

“Ultimately, we aren’t just creating alternatives to synthetic products. We’re figuring out how to ask Nature to do what it does best: figure out the problem for us.”


About Michigan State University

Michigan State University Spartans work every day to advance the common good in uncommon ways. Together we tackle some of the world’s toughest problems to find solutions that make life better.

For further information about Michigan State University, please visit the website here.

Displaying 3 keywords used to tag this article:
  • carbon capture  
  • enzymes  
  • patents